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Abstract. We consider a special case of Dickson’s lemma: for any two functions f, g on
the natural numbers there are two numbers i < j such that both f and g weakly increase
on them, i.e., fi ≤ fj and gi ≤ gj . By a combinatorial argument (due to the first author) a
simple bound for such i, j is constructed. The combinatorics is based on the finite pigeon
hole principle and results in a descent lemma. From the descent lemma one can prove
Dickson’s lemma, then guess what the bound might be, and verify it by an appropriate
proof. We also extract (via realizability) a bound from (a formalization of) our proof of
the descent lemma.

1. Introduction

Consider the following special case of Dickson’s lemma: for any two functions f, g on the
natural numbers there are two numbers i < j such that both f and g weakly increase on
them, i.e., fi ≤ fj and gi ≤ gj . By a combinatorial argument (due to the first author) a
simple bound for such i, j is constructed. The combinatorics is based on the finite pigeon
hole principle and results in a certain descent lemma. From the descent lemma one can
prove Dickson’s lemma, then directly guess what the bound might be, and finally verify it
by an appropriate proof. We also extract (via realizability) a bound from (a formalization
of) our proof of the descent lemma.

In its usual formulation, Dickson’s lemma (for fixed functions) is a Σ0
1-formula. In

contrast, we shall prove a quantifier-free statement which implies Dickson’s lemma in
its usual form, but not vice versa. Our proof can be carried out in the formal system
of Elementary Analysis [16, p.144], a conservative extension of Heyting arithmetic with
variables and quantifiers for number-theoretic functions. In fact, we don’t make use of the
axiom of choice at all. Furthermore, we can restrict induction to quantifier-free formulas.

Dickson’s lemma has many applications. For instance, it is used to prove termination
of Buchberger’s algorithm for computing Gröbner bases [4], and to prove Hilbert’s basis
theorem [14].

There are many other proofs of Dickson’s lemma in the literature, both with and without
usage of non-constructive (or “classical”) arguments. The original proof of Dickson [5]
and the particularly nice one by Nash-Williams [11] (using minimal bad sequences) are
non-constructive, and hence do not immediately provide a bound. But it is well known
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that by using some logical machinery one can still read off bounds, using either Gödel’s
[8] Dialectica translation as in Hertz [9] or Friedman’s [7] A-translation as in [3]. However,
these bounds – even for the case of just two functions considered here – heavily use higher
type (primitive recursive) functionals and are less perspicious than the one obtained below.

The first constructive proof of Dickson’s lemma has been given by Schütte and Simpson
[12, 14], using ordinal numbers and transfinite induction up to ε0. Similar methods have
been used by Sustik [15] and Mart́ın-Mateos et al. [10]. Since initial segments of transfinite
induction are used, these proofs when written in arithmetical systems require ordinary
induction on quantified formulas. A different constructive proof has been given by Veldman
[17]. It uses dependent choice for Σ1-formulas (with parameters), and induction on Π2-
formulas. This proof also provides the basis of Fridlender’s [6] formalization in Agda. The
computational content of these proofs has not been studied; the bound involved will be very
different from the present one.

2. A combinatorial proof of Dickson’s lemma

We start with a finite pigeonhole principle, in two disjunctive forms. The (rather trivial)
proofs are carried out because they have computational content which will influence the
term extracted from a formalization of our proofs in Section 3.

Lemma 2.1 (FPHDisj). ∀m,f (∃i<j≤mfi = fj ∨ ∃j≤mm ≤ fj).

Proof. By induction on m. For m = 0 the second alternative holds. In case m + 1 let fj
be maximal among f0, . . . , fm+1. If m + 1 ≤ fj we are done. Else we have fj ≤ m. Now
we apply the induction hypothesis to f ′ := f0, . . . , fj−1, fj+1, . . . , fm+1. If two of them are
equal we are done. Else m ≤ fk for some k 6= j and hence fj ≤ fk. If fj = fk we are done.
Else we have fj < fk, contradicting the choice of j.

Note that quantifier-free induction suffices here, since we only prove a property of finite
lists of natural numbers.

In the key lemma 2.3 below we will need a somewhat stronger disjunctive version of
the pigeonhole principle. To this end we need an injective coding 〈n,m〉 of natural numbers
which is “square-filling”, i.e. with the property

k2 ≤ 〈n,m〉 → k ≤ n ∨ k ≤ m. (2.1)

This can be achieved by

. . .

12 13 14 15 . . .

6 7 8 11 . . .

2 3 5 10 . . .

0 1 4 9 . . .

or explicitely

〈n,m〉 :=

{
n2 +m if m < n,

m2 +m+ n otherwise.

Lemma 2.2 (FPHDisj2).

∀f,g,k(∃i<j≤k2(fi = fj ∧ gi = gj) ∨ ∃j≤k2k ≤ fj ∨ ∃j≤k2k ≤ gj).
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Proof. Fix f, g, k. Use Lemma 2.1 with si := 〈fi, gi〉 and m := k2. In the first case from
si = sj we obtain fi = fj and gi = gj by the injectivity of the coding. In the second case
we have some j ≤ k2 with k2 ≤ sj . From the square-filling property (2.1) of the coding we
obtain k ≤ fj or k ≤ gj .

As an immediate consequence we have

Lemma 2.3 (Key).

∀f,g,n,k(∃n<i<j≤n+k2+1(fi = fj ∧ gi = gj) ∨
∃n<j≤n+k2+1k ≤ fj ∨ ∃n<j≤n+k2+1k ≤ gj).

Proof. Use Lemma 2.2 for λifn+1+i, λign+1+i and k.

Now we introduce some notation. Mini(f, n) is the first argument where f is minimal
on {0, . . . , n}:

Mini(f, 0) := 0,

Mini(f, n+ 1) :=

{
Mini(f, n) if fMini(f,n) ≤ fn+1,

n+ 1 otherwise.

We define functions Ψ,Φ, I and a formula D with arguments f, g, n. For readability f, g are
omitted.

Ψ(n) := max{fMini(g,n), gMini(f,n)},
Φ(n) := fMini(f,n) + gMini(g,n),

I(n) := n+ Ψ(n)2 + 1,

D(n) := ∃i<j≤n(fi ≤ fj ∧ gi ≤ gj).

(2.2)

D(n) expresses that n is a bound for Dickson’s lemma.
The next lemma states a crucial property of the function I: either I(n) already is a

bound for Dickson’s lemma, or else Φ decreases properly when going from n to I(n). Since
this cannot happen infinitely often, iteration of I will finally give us the desired bound.

Lemma 2.4 (Descent). D(I(n)) ∨ Φ(I(n)) < Φ(n).

Proof. Use Lemma 2.3 with f , g, n and Ψ(n). In the first case we have D(I(n)). In the
second case we have n < j ≤ I(n) with Ψ(n) ≤ fj ; the third case is symmetric. Let
i := Mini(g, n). Then fi ≤ Ψ(n). In case gi ≤ gj we have D(I(n)) and are done. Therefore
assume gj < gi. We show (i) Φ(I(n)) ≤ Φ(j) and (ii) Φ(j) < Φ(n). From j ≤ I(n) we
obtain (i). For (ii) we show fMini(f,j) + gMini(g,j) < fMini(f,n) + gi. Now n < j implies
fMini(f,j) ≤ fMini(f,n), and gMini(g,j) ≤ gj < gi.

From Lemma 2.4 we construct a bound for Dickson’s lemma. Let

I0(n) := n, Im+1(n) := I(Im(n)).

Lemma 2.5. D(In(0)) ∨ Φ(In(0)) + n ≤ Φ(0).

Proof. Induction on n. Step n 7→ n+ 1. Applying Lemma 2.4 to In(0) gives D(In+1(0)) ∨
Φ(In+1(0)) < Φ(In(0)). In the second case we have

Φ(In+1(0)) + n+ 1 < Φ(In(0)) + n+ 1 ≤ Φ(0) + 1

The latter inequality follows from the induction hypothesis, sinceD(In(0)) impliesD(In+1(0)).
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Proposition 2.6. D(If0+g0+1(0)).

Proof. Apply Lemma 2.5 to Φ(0) + 1.

This bound is far from optimal: already for

fn :=

{
1 if n = 0,

0 else
gn := 0

with optimal bound 2 we have

If0+g0+1(0) = I2(0) = I(I(0)) > I(0) = Ψ(0)2 + 1 = 2.

Can we extend this proof to show Dickson’s lemma for finitely many functions? For
instance for three functions a corresponding version of the key lemma holds:

∀f,g,h,n,k(∃n<i<j≤n+k4+1(fi = fj ∧ gi = gj ∧ hi = hj) ∨
∃n<j≤n+k4+1k ≤ fj ∨ ∃n<j≤n+k4+1k ≤ gj ∨ ∃n<j≤n+k4+1k ≤ hj)

(Proof. Apply the original key lemma to 〈f, g〉, h, n and k2). We can also define a measure
function Φ(n) := fMini(f,n) + gMini(g,n) + hMini(h,n). A natural candidate for Ψ is

Ψ(n) := max{fMini(g,n), fMini(h,n), gMini(f,n), gMini(h,n), hMini(f,n), hMini(g,n)}

and a natural candidate for I is I(n) := n+ Ψ(n)4 + 1. But the corresponding version of
the descent lemma is false: let n := 2 and

f := (0, 1, 1, 1, 0, f5, . . . ),

g := (1, 0, 1, 0, 1, g5, . . . ),

h := (1, 1, 0, 0, 0, h5, . . . ).

Then Φ(n) = 0, Ψ(n) = 1, I(n) = 4, and we neither have D(I(n)) nor Φ(I(n)) < Φ(n). –
However, it may well be that a more refined form of the present approach works. We leave
this for future research.

3. Extracting computational content

In the following, we demonstrate how a bound for Dickson’s lemma can be extracted from a
proof of the existence of such a bound. The proof we will use is essentially the one presented
in Section 2, i.e., it is based on the descent lemma 2.4. We will then apply the realizability
interpretation to obtain the bound. In fact, the bound will be machine extracted from a
formalization of the existence proof.

In more detail, we shall use that I is increasing (i.e., n < I(n)) and that from D(n) and
n < m we can infer D(m). Then we prove the existence of a bound by general induction
with measure Φ.
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3.1. General induction and recursion. We first explain general induction w.r.t. a mea-
sure, and the corresponding definition principle of general recursion.

General induction allows recurrence to all points “strictly below” the present one. In
applications it is best to make the necessary comparisons w.r.t. a measure function µ; for
simplicity we restrict ourselves to the case where µ has values in the natural numbers, and
the ordering we refer to is the standard <-relation. The principle of general induction then
is

∀µ,x(ProgµxPx→ Px),

where ProgµxPx expresses “progressiveness” w.r.t. µ and <, i.e.,

ProgµxPx := ∀x(∀y(µy < µx→ Py)→ Px).

It is easy to see that in our special case of the <-relation we can prove general induction
from structural induction. However, it will be convenient to use general induction as a
primitive axiom, for then the more efficient general recursion constant F will be extracted.
It is defined by

FµxG = Gx(λy[if µy < µx then FµyG else ε]),

where ε denotes a canonical inhabitant of the range. It is easy to prove that F is definable
from an appropriate structural recursion operator.

3.2. Non-computational quantifiers. We now use general induction in our constructive
proof of Dickson’s lemma. However, we have to be careful with the precise formulation of
what we want to prove. We are not interested in the pair i, j of numbers where both f
and g increase, but only in a bound telling us when at the latest this must have happened.
Therefore the existential quantifiers ∃i,j must be made “uniform” (i.e., non-computational);
it will be disregarded in the realizability interpretation. Such non-computational quantifiers
have first been introduced in [1, 2]; in [13] this concept is extended to all connectives and
discussed in detail. Let

D′(n) := ∃ui<j≤n(fi ≤ fj ∧ gi ≤ gj).
Using this non-computational form of D(n) we modify Lemma 2.4 to

Lemma 3.1 (Descentnc). D′(I(n)) ∨ Φ(I(n)) < Φ(n).

Note that the computational content of a proof of this lemma is that of a functional
mapping two unary functions and a number into a boolean. From Lemma 3.1 we obtain as
before a modification of Proposition 2.6 to

Proposition 3.2 (Bound for Dickson’s lemma).

∀f,g,n∃k(I(n) ≤ k ∧D′(k)).

Proof. By general induction with measure function Φ. We fix f, g and prove progressiveness
of the remaining ∀n∃k-formula. Therefore we can assume as induction hypothesis that for
all m with Φ(m) < Φ(n) we have

∃k(I(m) ≤ k ∧D′(k)).

We must show
∃k(I(n) ≤ k ∧D′(k)).

By Lemma 3.1 we know D′(I(n)) ∨ Φ(I(n)) < Φ(n). In the first case we have D′(I(n))
and can take k := I(n). In the second case we apply the induction hypothesis to I(n). It
provides a k with I(I(n)) ≤ k and D′(k). But I(n) ≤ I(I(n)) since n < I(n).
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3.3. Formalization and extraction. The formalization1 (in Minlog2) of the proof above
is now routine. The term extracted from it is

[f,g,n](GRecGuard nat nat)(Phi f g)n

([n0,f1][if (cDesc f g n0) (I f g n0) (f1(I f g n0))])

True

To explain this term we rewrite it in the notation above

λf,g,nFµnG
with measure µ and step function G defined by

µ := Φ,

G(n, h) :=

{
I(n) if cDesc(n), i.e., D′(I(n)),

h(I(n)) otherwise, i.e., Φ(I(n)) < I(n),

where for readability we again omit the arguments f, g from Φ, I, cDesc. The functions Φ, I
are defined as in (2.2), and cDesc is the computational content of Lemma 3.1:

[f,g,n][case (cKey f g n(f(Mini g n)max g(Mini f n)))

((DummyL nat ysum nat) -> True)

(Inr nn ->

[case nn

((InL nat nat)n0 ->

(cNatLeLtCases boole)(g(Mini g n))(g n0)True False)

((InR nat nat)n0 ->

(cNatLeLtCases boole)(f(Mini f n))(f n0)True False)])]

Here nn is a variable of type N+N with N the type of natural numbers, and cNatLeLtCases:

(Rec nat=>nat=>alpha=>alpha=>alpha)n

([n0,x,x0][case n0 (0 -> x0) (Succ n1 -> x)])

([n0,h,n1,x,x0][case n1 (0 -> x) (Succ n2 -> h n2 x x0)])

is the computational content of the (simple) proof of

∀n,m((n ≤ m→ P )→ (m < n→ P )→ P )

expressing case distinction w.r.t. ≤ and <.
cKey is the computational content of Lemma 2.3:

[f,g,n,n0]

[case (cFPHDisjTwo([n1]f(Succ(n+n1)))([n1]g(Succ(n+n1)))n0)

((DummyL nat ysum nat) -> (DummyL nat ysum nat))

(Inr nn ->

Inr[case nn

((InL nat nat)n1 -> (InL nat nat)(Succ(n+n1)))

((InR nat nat)n1 -> (InR nat nat)(Succ(n+n1)))])]

which uses cFPHDisjTwo:

[f,g,n][if (cFPHDisj(n*n)

([n0][if (g n0<f n0)

(f n0*f n0+g n0)

1Available at git/minlog/examples/arith/dickson.scm
2See http://www.minlog-system.de

http://www.minlog-system.de
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(g n0*g n0+g n0+f n0)]))

([ij](DummyL nat ysum nat))

([n0]

Inr[if (cCodeSqFill(f n0)(g n0)n)

((InL nat nat)n0)

((InR nat nat)n0)])]

which in turn depends on cCodeSqFill:

[n,n0,n1](Rec nat=>nat=>boole)n([n2]False)

([n2,(nat=>boole),n3]

[case n3 (0 -> True) (Succ n -> (nat=>boole)n)])

n0

and cFPHDisj:

[n](Rec nat=>(nat=>nat)=>nat@@nat ysum nat)n

([f](InR nat nat@@nat)0)

([n0,d,f]

[let n1

[if (f(Succ n0)<=f(Maxi f n0)) (Maxi f n0) (Succ n0)]

[if (Succ n0<=f n1)

((InR nat nat@@nat)n1)

[if (d([n2][if (n2<n1) (f n2) (f(Succ n2))]))

([ij]

(InL nat@@nat nat)

[if (right ij<n1)

ij

([if (left ij<n1)

(left ij)

(Succ left ij)]@Succ right ij)])

([n2]

[if (n2<n1)

((cNatLeCases nat@@nat ysum nat)(f n2)(f n1)

((InL nat@@nat nat)(0@0))

((InL nat@@nat nat)(n2@n1)))

((cNatLeCases nat@@nat ysum nat)(f(Succ n2))(f n1)

((InL nat@@nat nat)(0@0))

((InL nat@@nat nat)(n1@Succ n2)))])]]])

To summarize, we have extracted a function which takes two functions f, g (suppressed
for readability) and a number n and yields a bound. Notice that already with n = 0 we
obtain the desired bound for Dickson’s lemma. However, the inductive argument requires
the general formulation.

Our extracted bound B(n) := FΦnG satisfies

B(n) = FΦnG = Gn(λm[if Φm < Φn then FΦmG else ε])

=

{
I(n) if D′(I(n)),

B(I(n)) if Φ(I(n)) < I(n).
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by Lemma 3.1, which also guarantees termination: B(n) will call itself at most I(n) times.
As long as the iterations I(n), I2(n), . . . , Im(n) decrease w.r.t. the measure Φ, the next
iteration step is done. However, as soon as Lemma 3.1 goes to its “left” alternative (i.e.,
D′(I(n)) holds), I(n) is returned. Hence this extracted bound differs from the “guessed”
one in Proposition 2.6 in that it does not iterate I a prescribed number of times (f0 + g0 + 1
many) at 0, but stops when allowed to do so by the outcome of Lemma 3.1.
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