
Logical Methods in Computer Science
Volume 18, Issue 1, 2022, pp. 38:1–38:27
https://lmcs.episciences.org/

Submitted Aug. 31, 2021
Published Mar. 10, 2022

BDD-BASED ALGORITHM FOR SCC DECOMPOSITION
OF EDGE-COLOURED GRAPHS

NIKOLA BENEŠ, LUBOŠ BRIM, SAMUEL PASTVA, AND DAVID ŠAFRÁNEK

Masaryk University, Brno, Czech Republic
e-mail address: {xbenes3,brim,xpastva,safranek}@fi.muni.cz

Abstract. Edge-coloured directed graphs provide an essential structure for modelling
and analysis of complex systems arising in many scientific disciplines (e.g. feature-oriented
systems, gene regulatory networks, etc.). One of the fundamental problems for edge-coloured
graphs is the detection of strongly connected components, or SCCs.

The size of edge-coloured graphs appearing in practice can be enormous both in the
number of vertices and colours. The large number of vertices prevents us from analysing
such graphs using explicit SCC detection algorithms, such as Tarjan’s, which motivates the
use of a symbolic approach. However, the large number of colours also renders existing
symbolic SCC detection algorithms impractical.

This paper proposes a novel algorithm that symbolically computes all the monochromatic
strongly connected components of an edge-coloured graph. In the worst case, the algorithm
performs O(p · n · logn) symbolic steps, where p is the number of colours and n is the
number of vertices.

We evaluate the algorithm using an experimental implementation based on binary
decision diagrams (BDDs). Specifically, we use our implementation to explore the SCCs
of a large collection of coloured graphs (up to 248) obtained from Boolean networks –
a modelling framework commonly appearing in systems biology.

Introduction

In many scientific disciplines, the processing of massive data sets represents one of the most
important computational tasks. A variety of these data sets can be modelled in terms of
very large multi-graphs, augmented by a specific collection of application-dependent edge
attributes. These attributes are often abstractly referred to as colours, and the resulting
formalism is called an edge-coloured graph [BJG97, BCLF79]. Geographic information
systems, telecommunications traffic, or internet networks are prime examples of data that
are best represented as such edge-coloured graphs.

For instance, in social networks, coloured edges can be used to link together groups
of nodes related by some specific criteria (Sports, Health, Technology, Religion, etc.). In
software engineering, one often speaks about feature-oriented systems [CHS+10]. In this
case, colours represent possible combinations of features, altering the system’s behaviour.

Key words and phrases: strongly connected components, symbolic algorithm, edge-coloured digraphs,
saturation, systems biology.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(1:38)2022
© N. Beneš, L. Brim, S. Pastva, and D. Šafránek
CC© Creative Commons

ar
X

iv
:2

10
8.

13
11

3v
3

 [
cs

.D
S]

 9
 M

ar
 2

02
2

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

38:2 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Our interest in processing huge edge-coloured graphs is primarily motivated by applica-
tions taken from systems biology [BBK+12, GGG+17] and genetics [Dor94] where we have
to deal not only with giant graphs as measured by the number of vertices and edges but also
with large sets of colours. In this case, the graph colours represent valuations of numerous
parameters that influence the dynamics of a biological system [BBK+12, BPC+10, RCB05].

Fundamental graph algorithms such as breadth-first search, spanning tree construction,
shortest paths, decomposition into strongly connected components (SCCs), etc., are building
blocks of many practical applications. For the edge-coloured graphs, the primary research
focus so far has been on some of the “classical” coloured graph problems, like the determination
of the chromatic index, finding sub-graphs with a specified colour property (the coloured
version of the k-linked problem), alternating edge-coloured cycles and paths, rainbow cliques,
monochromatic cliques and cycles, etc. [ADF+08, AA07, AG97, BJG97, TW07, KL08].

To the best of our knowledge, we are not aware of any work on SCC decomposition
specifically for edge-coloured graphs, even though this problem has many important applica-
tions. For example, in biological systems, strongly connected components represent the so
called attractors of the system. In this case, a specific focus is given to terminal (or bottom)
SCCs, but non-terminal (transient) SCCs can also be detrimental to the system’s long-term
behaviour [PIS+21]. Overall, SCCs play an essential role in determining the system’s biologi-
cal properties, since they may correspond, for example, to the specific phenotypes expressed
by a cell [CC16].

The valuation of parameters (e.g. the presence of certain genes or external stimuli) in
such systems is then represented as edge colours in the state-transition graph. The knowledge
of SCCs and how their structure depends on parameters is vital for understanding various
biological phenomena [DAERR16, LWA+16]. Other applications where investigation of
attractors is crucial include predictions of the global climate change [SRR+18] or predictions
of spreading of infectious diseases such as COVID-19 [Mat20].

There is a serious computational problem related to the processing of massive edge-
coloured graphs (or even the non-coloured ones) that significantly affects the tractability
of SCC decomposition. The graphs often cannot be handled using standard (explicit)
representations, since they are too large to be kept in the main memory. Various approaches
have been considered to deal with such giant graphs: distributed-memory computation,
symbolic data structures for graph representation, or storing the graphs in external memory.
We review these approaches in more detail in the related work section.

In [BBB+17, BBP+19] we have initially attacked the SCC decomposition problem for
massive edge-coloured graphs by developing a parallel, semi-symbolic algorithm for detection
of bottom SCCs. The algorithm uses symbolic structures to represent sets of parameters,
while the graph itself is represented explicitly. However, the results have shown that the
parallel semi-symbolic algorithm is often not sufficient to tackle graphs representing real-world
problems practically. These findings have motivated us to propose a new, entirely symbolic
approach.

In this paper, we consider edge-coloured multi-digraphs, i.e., multi-digraphs such that
each directed edge has a colour and no two parallel (i.e., joining the same pair of vertices)
edges have the same colour. Here, we refer to such graphs simply as coloured graphs. For
coloured graphs, we can define several notions of strongly connected components involving
colours. We consider the simplest case, where the SCCs are monochromatic, that is all their
edges have the same colour [Kir14]. This choice is motivated by the application in systems
biology, as mentioned above.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:3

Contribution. We propose a novel fully symbolic algorithm for detecting all monochromatic
strongly connected components in a coloured graph. This algorithm is in practice significantly
faster than what is achievable by naïvely executing a symbolic SCC decomposition algorithm
for each colour separately. This is because in many applications, the edges are largely shared
among individual colours [BBK+12] and our algorithm is capable of exploiting this fact. The
algorithm conceptually follows the lock-step reachability approach by Bloem et al. [BGS00]
for purely monochromatic digraphs. The key new ingredients behind our algorithm are
a careful orchestration of the forward and backward reachability for different colours, and
a colour-aware selection of the pivot set.

Structure of the paper. In Section 1, we recall the notions of strongly connected compo-
nents and edge-coloured digraphs, and we state the coloured SCC decomposition problem.
In Section 2, we first briefly introduce the forward-backward decomposition algorithm and
the lock-step algorithm for monochromatic graphs. After that, we present the coloured SCC
decomposition algorithm together with the proof of correctness and complexity analysis.

In Section 3, we introduce Boolean networks, discuss their symbolic encoding, and
show how they can be translated into coloured graphs suitable for SCC-decomposition.
Subsequently, Section 4 discusses several practical improvements to the main algorithm
(saturation, trimming, and parallelism) which help it scale to larger models, and thus be more
practically viable. Finally, Section 4 evaluates the main algorithm (including the improved
variants) using a collection of large, real-world Boolean networks. A conclusion is provided
in the last section.

This article is an extended version of an article that appeared in the Proceedings of
TACAS 2021 [BBPŠ21]. We extend the information provided in the TACAS Proceedings
with more in-depth technical details of the algorithm and related proof, including explanation
of its key steps. Moreover, we extend the implementation and evaluation sections to give the
reader more information on how the performance of the algorithm can be improved, and how
the algorithm performs using a variety of real-world case studies.

Related Work. The detection of SCCs in (monochromatic) digraphs is a well-known prob-
lem computable in linear time. Best serial (explicit) algorithms are Kosaraju-Sharir [Sha81]
and Tarjan [Tar72], which are both inherently based on depth-first search. However, these al-
gorithms do not scale for large graphs, e.g., those encountered in model-checking, when using
explicit graph representation. Therefore, alternative approaches to such SCC decomposition
have been proposed (e.g. I/O efficient, parallel, or symbolic algorithms).

The algorithm of Jiang [Jia93] gives an I/O-efficient alternative based on a combination
of depth-first and breadth-first search.

Efficient parallel, distributed-memory algorithms avoid the inherently sequential DFS
step [Rei85] in several different ways. The Forward-Backward algorithm [FHP00] employs
a divide-and-conquer approach relying on picking a pivot state and splitting the graph
in three independent (SCC-closed) parts. The approach of Orzan [Orz05] uses a different
distribution scheme called a colouring transformation, employing a set of prioritised colours to
split the graph into many parts at once. The OWCTY-Backward-Forward (OBF) approach
is proposed in [BCVDP11]. It recursively splits the graph in a number of independent
sub-graphs called OBF slices and applies to each slice the One-Way-Catch-Them-Young
(OWCTY) technique. In [SRM14], the authors utilise variants of the Forward-Backward and

38:4 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Orzan’s algorithms for optimal execution on shared-memory multi-core platforms. Finally,
Bloemen et al. [BLvdP16] present an on-the-fly parallel algorithm utilising a swarm of DFS
searches, showing promising speed-up for large graphs containing large SCCs. On another
end, GPU-accelerated approaches to computing SCCs have been addressed for example
in [BBBv11, HRO13, LZCY14, WKB14].

Computing SCCs of (monochromatic) digraphs symbolically is another way to handle
giant graphs and has been thoroughly explored in literature. As in the case of efficient
parallelisation, depth-first search is not feasible in the symbolic framework [GPP08]. In con-
sequence, many DFS-based algorithms cannot be easily revised to work with symbolically
represented graphs. An algorithm based on forward and backward reachability performing
O(n2) symbolic steps was presented by Xie and Beerel in [XB00]. Bloem et al. present an
improved O(n · log n) algorithm in [BGS00]. Finally, an O(n) algorithm was presented by
Gentilini et al. in [GPP03, GPP08]. This bound has been proven to be tight in [CDHL18].
In [CDHL18], the authors argue that the algorithm from [GPP03] is optimal even when
considering more fine-grained complexity criteria, like the diameter of the graph and the diam-
eters of the individual components. Ciardo et al. [ZC11] use the idea of saturation [CMS06]
to speed up state exploration within the Xie-Beerel algorithm, and show a saturation-based
technique for computing the transitive closure of the graph’s edge relation.

Besides these generic algorithms, there have also been symbolic SCC decomposition
methods to deal with large graphs generated specifically by Boolean networks [MPQY19,
YMPQ19]. However, these primarily target detection of bottom SCCs. Methods in this area
are also often incomplete, for example focusing on detection of single-state or small bottom
SCCs [ZHA+07]. As such, they generally perform better than an exhaustive symbolic SCC
detection in their respective application domains, but are inherently limited in scope.

1. Problem Definition

As we have already stated in the introductory section, the SCC decomposition problem for
edge-coloured graphs has remained mostly unexplored until now. We thus start this paper
by introducing and formalising the notion of coloured SCC decomposition itself and state
some of its basic properties.

Before giving exact definitions, it might be instructive to discuss the substance of the
coloured SCC decomposition intuitively. There are several ways of capturing the notion
of a “coloured connected component”. One of them is that of a colour-connectivity first
introduced by Saad [Saa92]. It is based on alternating paths in which successive edges
differ in colour. However, there is no unique, universally acceptable notion of a coloured
component.

In the biological applications we have in mind (i.e. Boolean networks), we want to identify
a coloured component as a coloured collection of SCCs—a collection where for every colour
there is a set of all relevant monochromatic SCCs. Such a setting leads us to represent SCCs
in the form of a relation. To that end, we first introduce such a relation for monochromatic
graphs (Section 1.1) and afterwards extend it to edge-coloured graphs (Section 1.2). The
relation-based approach gives us also the advantage of allowing a feasible symbolic encoding
of the problem.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:5

1.1. Graphs and Strongly Connected Components. Let us first recall the standard
definitions of a directed graph and its strongly connected components:

Definition 1.1. A directed graph is a tuple G = (V,E) where V is a set of graph vertices
and E ⊆ V × V is a set of graph edges.

We are going to use the word graph to mean directed graph in the following. We write
u → v when (u, v) ∈ E and u →∗ v when (u, v) ∈ E∗, the reflexive and transitive closure
of E. We say that v is reachable from u if u →∗ v. The reachability relation allows us to
decompose a graph into strongly connected components, defined as follows:

Definition 1.2. In a graph G = (V,E), a strongly connected component (SCC) is a maximal
set W ⊆ V such that for all u, v ∈ W , u →∗ v and v →∗ u. For a fixed v ∈ V , we write
SCC(G, v) to denote the SCC of G that contains v.

If the graph G is clear from the context, we can simply write SCC(v). A set of vertices
S ⊆ V is said to be SCC-closed if every SCC W is either fully contained inside S (W ⊆ S),
or in its complement (W ⊆ V \ S). Notice that given a vertex v, the set of all vertices
reachable from v, as well as the set of all vertices that can reach v, are both SCC-closed.

A pivotal problem in computer science is to find the SCC decomposition of G. As
mentioned above, we represent the decomposition in the form of an equivalence relation Rscc

such that the individual SCCs are exactly the equivalence classes of Rscc . The relation-based
formulation of the SCC decomposition problem is the following:

Problem 1.3 (SCC decomposition). Given a graph G = (V,E), find the SCC decomposition
relation Rscc ⊆ V × V such that (u, v) ∈ Rscc if and only if SCC(u) = SCC(v).

Note that SCC(u) can be obtained by fixing the first attribute of Rscc , i.e. SCC(u) =
{v | (u, v) ∈ Rscc}. We refer to such operation as section and denote it in the following way:
SCC(u) = Rscc(u,_) (the concept is properly formalised later as part of Fig. 1). Here, u is
the specific value of an attribute at which the section is taken, and _ is used in place of the
attributes that remain unchanged. Such notation naturally extends to arbitrary relations.

1.2. Coloured SCC Decomposition Problem. We now lift the formal framework to the
coloured setting. An edge-coloured graph can be seen as a succinct representation of several
different graphs, all sharing the same set of vertices. To emphasise the difference from the
standard graphs (i.e. Definition 1.1), we sometimes call the standard graphs monochromatic.

Definition 1.4. An edge-coloured directed multi-graph (coloured graph for short) is a tuple
G = (V,C,E) where V is a set of vertices, C is a set of colours and E ⊆ V × C × V is
a coloured edge relation.

We also write u c−→ v whenever (u, c, v) ∈ E and use c−→∗ to denote the reflexive and
transitive closure of c−→. We say that v is c-reachable from u if u c−→∗ v, i.e. there is a path
from u to v using only c-coloured edges. By fixing a colour c ∈ C and keeping only the
c-coloured edges (with the colour attribute removed), we obtain a monochromatic graph
G(c) = (V, {(u, v) | (u, c, v) ∈ E}). We call this graph the monochromatisation of G with
respect to c. Intuitively, one can view the elements of C as a type of graph parametrisation
where the edge structure of the graph changes based on the specific c ∈ C.

The SCC decomposition relation Rscc is extended to the coloured SCC decomposition
relation Rscc by relating every colour c ∈ C with all SCCs of the monochromatisation

38:6 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

G(c). In consequence, the SCC decomposition problem is then lifted to the coloured SCC
decomposition problem as follows:

Problem 1.5 (Coloured SCC decomposition). Given a coloured graph G = (V,C,E), find
the coloured SCC decomposition relation Rscc ⊆ V ×C × V satisfying (u, c, v) ∈ Rscc if and
only if (u, v) ∈ Rscc of G(c).

From this definition, we can immediately observe the following properties about the
relationship of Rscc with the terms which we have defined before:
• Rscc of a monochromatisation G(c) is exactly the section Rscc(_, c,_);
• SCC(G(c), v) is exactly the section Rscc(v, c,_), or equivalently, Rscc(_, c, v) (since Rscc

and Rscc are symmetric with regards to V).
From this, it should be immediately apparent that Rscc contains all components of the
underlying monochromatisations.

2. Algorithm

Conceptually, our algorithm follows the lock-step reachability approach by Bloem [BGS00]
for monochromatic graphs. The lock-step algorithm itself is based on the basic forward-
backward decomposition algorithm [XB00]. In this section, we first briefly introduce these
two algorithms to explain better the key ideas behind our approach and, in particular, to
explain the main difficulties encountered in employing the concepts of these algorithms
to edge-coloured graphs. Although the algorithms were originally presented as producing
a set of SCCs, we reformulate them slightly using the equivalent relation-based approach as
explained in the previous section. After that, we present the coloured SCC decomposition
algorithm. However, before we dive into the algorithmics, let us first briefly discuss the
computation model we are using.

2.1. Symbolic Computation Model. As a complexity measure of our algorithm, we
consider the number of symbolic steps, or more specifically, symbolic set and relation
operations that the algorithm performs. As is customary, we assume that sets of vertices (V)
and colours (C) can be represented symbolically (for example, using reduced ordered binary
decision diagrams [Bry86]) as well as any relations over these sets. In particular, we often
talk about coloured vertex sets, by which we mean the subsets of V × C.

Aside from normal set operations (union, intersection, difference, product and element
selection), we also require some basic relational operations, all of which we outline in Figure 1.
These extra operations tend to appear in other applications as well (such as symbolic model
checking [BCM+92]), and are thus typically already available in mature symbolic computation
packages.

Finally, there are several derived operators that are partially specific to our application
to coloured graphs. However, these can be constructed using standard set and relation
operations. The intuitive meaning of the derived operators is as follows: Colours returns
all the colours that appear in the given coloured vertex set. Pre and Post compute the pre-
and post-image of a (monochromatic or coloured) set of vertices, i.e. the set of successors or
predecessors of all the vertices in the given set, respectively. Finally, Join takes a coloured
vertex set A and computes the set {(u, c, v) | (u, c) ∈ A, (v, c) ∈ A}.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:7

Standard set operations

pick element Pick(A) arbitrary x ∈ A
union A ∪B {x | x ∈ A ∨ x ∈ B}

intersection A ∩B {x | x ∈ A ∧ x ∈ B}
difference A \B {x | x ∈ A ∧ x 6∈ B}
product A×B {(x, y) | x ∈ A ∧ y ∈ B}

Relation manipulation (R ⊆ S1 × . . .× Sn)

i-th section at x σi(x,R)
{(y1, . . . , yi−1, yi+1, . . . , yn) |

(y1, . . . , yi−1, x, yi+1, . . . , yn) ∈ R}
existential

quantification of
the i-th element

∃i(R)
⋃

x∈Si
σi(x,R)

swap Swap(R ⊆ A×B) {(y, x) ∈ B ×A | (x, y) ∈ R}
Derived operations (G = (V,E),G = (V,C,E))

colours Colours(A ⊆ V × C) ∃1(A)
pre-image Pre(G,A ⊆ V) ∃2((V ×A) ∩ E)

post-image Post(G,A ⊆ V) ∃1((A× V) ∩ E)

coloured
pre-image Pre(G, A ⊆ V × C) ∃3((V × Swap(A)) ∩ E)

coloured
post-image Post(G, A ⊆ V × C) Swap(∃1((A× V) ∩ E))

coloured join Join(A ⊆ V × C) (V × Swap(A)) ∩ (A× V)

Figure 1: Summary of symbolic operations that appear in the presented algorithms. The
derived operations can be implemented using the standard and relational operations.
However, typically they also have a slightly more efficient direct implementations.

2.2. Forward-Backward Algorithm. To symbolically compute the SCCs of a graph G =
(V,E), Xie and Beerel [XB00] observed that for any vertex v ∈ V , the intersectionW = F ∩B
of the forward reachable vertices F = {v′ ∈ V | v →∗ v′} and the backward reachable vertices
B = {v′ ∈ V | v′ →∗ v} is exactly the strongly connected component of G which contains v.

The algorithm thus picks an arbitrary pivot v ∈ V , and divides the vertices of the graph
into four disjoint sets: W , F \W , B \W and V \ (F ∪ B). This is illustrated graphically
in Figure 2 (left). The set W is then immediately reported as an SCC of the graph, and
added into the component relation: Rscc ← Rscc ∪ (W ×W). It is easy to see that every
other SCC is fully contained within one of the three remaining sets (they are SCC-closed),
and the algorithm thus recursively repeats this process independently in each set.

The correctness of the algorithm follows from the initial observation and the fact that
every vertex eventually appears in W (either as a pivot or as a result of F ∩ B). In the
worst case, the algorithm performs O(|V |2) symbolic steps, since every vertex is picked as

38:8 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

V

B F
W

v

V

Non

Con
W

v

Figure 2: Illustration of the difference between the forward-backward algorithm (left) and
the lock-step algorithm (right). On the left, we fully compute both backward (B)
and forward (F) reachable sets from the pivot v, identifying W as F ∩B. On the
right, without loss of generality, assume F is fully computed first. It thus becomes
converged (Con) and the computation of B (Non) is stopped before it is fully
explored.

a pivot at most once and the computation of F and B requires at most O(|V |) Pre/Post
operations.

2.3. Lock-step Algorithm. To improve the efficiency of the forward-backward algorithm,
the lock-step approach [BGS00] uses another important observation: To compute W , it is
not necessary to fully compute both F and B; only the smaller (in terms of diameter) of the
two sets needs to be entirely known. With this observation, the computation of F and B
can be modified in the following way: Instead of computing F and B one after the other,
the computation is interleaved in a step-by-step manner (dovetailing). When one of the sets
is fully computed, the computation of the second set is stopped. Let us call the computed
set converged and denote it by Con, and the unfinished set non-converged and denote it by
Non. This situation is illustrated in Figure 2 (right).

However, even when Con is fully known, we still need to finish the computation of states
in Non that are inside Con to discover the whole component W . This is necessary if there
are vertices w in W whose forward distance from v (i.e. the length of the path v →∗ w) is
short while their backward distance (the length of the path w →∗ v) is long, or vice versa.
Such vertices are thus only discovered in one of the two reachability procedures and still need
to be discovered by the other one to identify the whole component. However, an important
observation is that only the vertices already inside Con need to be considered in this phase.

After this, the SCC can be identified and reported just as in the forward-backward
algorithm. Finally, the recursion now continues in sets Con \W and V \Con. This is due to
Non being not fully computed; we cannot guarantee that no SCC overlaps outside of Non
(Non is not necessarily SCC-closed).

The algorithm is still correct because every vertex is eventually either picked as a pivot or
discovered in some W . Furthermore, due to the way Con and Non are computed guarantees
that W is still a whole SCC. In terms of complexity, the algorithm performs O(|V | · log |V |)
symbolic steps in the worst case. To see why this is true, we may observe that every vertex
appears in W exactly once, and that the smaller of the two sets Con \W and V \Con, let us
call it S, is always smaller than |V |2 . The authors then argue that the price of every iteration

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:9

can be attributed (up to a multiplicative constant) to the vertices in S ∪W and that every
vertex appears in S at most O(log |V |)-times.

2.4. Coloured Lock-step Algorithm. When developing an algorithm for coloured graphs,
one needs to deal with multiple challenges which do not appear for monochromatic graphs
and require careful consideration. In the following, we refer to the pseudocode in Algorithm 1.

An important observation is that the structure of components in the graph can change
arbitrarily with respect to the graph colours. In consequence, our algorithm cannot simply
operate with sets of graph vertices as the normal algorithm would. To that end, we use the
notion of coloured vertex sets as introduced in Section 2.1 where the symbolic operations we
perform on these sets have been described.

Pivot selection. Initially, the algorithm starts with all vertices and colours, i.e. the full set
V × C. However, as the components are discovered, the intermediate results V may contain
different vertices appearing only for certain subsets of C. As a result, we often cannot pick
a single pivot vertex that would be valid for all considered colours. Instead, we aim to pick
a pivot set P ⊆ V × C such that for every colour that still appears in V, the set contains
exactly one vertex. Alternatively, one can also view the pivot set as a (partial) function from
C to V . This is done in the Pivots function. In the following discussion of the algorithm,
we write c-coloured pivot to mean the vertex u such that (u, c) is found in the coloured set
returned by Pivots in the current iteration (for all colours still present in V).

Please note that the presented Pivots routine is rather naive, as it has to explicitly
iterate all the pivot vertices, whose number can be substantial in the worst case. However, as
presented, it should be easy to implement for basically any type of coloured graphs, regardless
of the underlying representation. In the implementation section, we show Pivots can be
re-implemented in the domain of BDDs such that it is guaranteed to always require only
O(log |V |) symbolic operations.

Coloured lock-step (phase one). The lock-step reachability procedure also cannot operate
as in a standard graph. First of all, there can be colours where the forward reachability
converges first, as well as colours where this happens for backward reachability. The algorithm
thus has to account for both options simultaneously. Second, for each colour, the reachability
can converge in a different number of steps. To deal with this problem, we introduce the Flock

and Block variables. These store the mutually disjoint sets of colours for which the forward
and backward reachability procedures have already converged. The lock-step procedure then
terminates when Flock and Block contain all the colours that appear in V.

Throughout the algorithm, we keep track of several coloured-set variables. The first two,
F and B, represent the forward and backward reachable sets, respectively. This means that
for every colour c present in V, if u is the c-coloured pivot, every (v, c) ∈ F satisfies u c−→∗ v
and every (v, c) ∈ B satisfies v c−→∗ u. Furthermore, if c ∈ Flock then F contains exactly all
such pairs; similarly for Block and B.

We say that a coloured vertex pair (v, c) has been forward expanded or backward expanded
in the current iteration of the algorithm, if there has been a call to the Post or Pre symbolic
operation with (v, c) being an element of the coloured set argument. To track which reachable
coloured vertices are to be expanded later, also called the frontiers of the reachability sets,
we have the four variables Fopen , Fpaused , Bopen , Bpaused .

38:10 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Algorithm 1: Symbolic Coloured SCC Decomposition
1 Function ColouredSCC(G = (V,C,E))
2 Rscc ⊆ (V × C × V)← ∅;
3 Decomposition(G,Rscc , V × C);
4 return Rscc ;

5 Function Decomposition(G = (V,C,E),Rscc ⊆ (V × C × V),V ⊆ (V × C))
6 if V = ∅ then return;
7 F ,B,Fopen ,Bopen ⊆ (V × C)← Pivots(V);
8 Fpaused ,Bpaused ⊆ (V × C)← ∅;
9 Flock , Block ⊆ C ← ∅;

10 while Flock ∪Block ⊂ Colours(V) do
11 Fopen ← (Post(G,Fopen) ∩ V) \ F ;
12 Bopen ← (Pre(G,Bopen) ∩ V) \ B;
13 Flock ← Flock ∪ (Colours(V) \Colours(Fopen) \Block);
14 Block ← Block ∪ (Colours(V) \Colours(Bopen) \ Flock);
15 Fpaused ← Fpaused ∪ (Fopen ∩ (V ×Block));
16 Bpaused ← Bpaused ∪ (Bopen ∩ (V × Flock));
17 Fopen ← Fopen \ (V ×Block);
18 Bopen ← Bopen \ (V × Flock);
19 F ← F ∪ Fopen ;
20 B ← B ∪ Bopen ;
21 end
22 Con ⊆ V × C ← (F ∩ (V × Flock)) ∪ (B ∩ (V ×Block));
23 Fopen ← Fpaused ∩ Con;
24 Bopen ← Bpaused ∩ Con;
25 while Fopen 6= ∅ ∨ Bopen 6= ∅ do
26 Fopen ← (Post(G,Fopen) ∩ Con) \ F ;
27 Bopen ← (Pre(G,Bopen) ∩ Con) \ B;
28 F ← F ∪ Fopen ;
29 B ← B ∪ Bopen ;
30 end
31 W ⊆ V × C ← F ∩ B;
32 Rscc ← Rscc ∪ Join(W);
33 Decomposition(G,Rscc ,V \ Con);
34 Decomposition(G,Rscc , Con \W);

35 Function Pivots(V)
36 P ⊆ (V × C)← ∅; V ′ ⊆ (V × C)← V;
37 while V ′ 6= ∅ do
38 (v, c)← Pick(V ′);
39 P ← P ∪ ({v} × σ1(v,V ′));
40 V ′ ← V ′ \ (V ×Colours(P));
41 end
42 return P;

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:11

The frontier of F is the union Fopen ∪ Fpaused . The sets Fopen and Fpaused are disjoint:
Fopen involves those colours for which the lock-step reachability procedure has not finished
yet, i.e. the colours that are neither in Flock nor in Block , while Fpaused represents the part
of the frontier whose exploration is currently paused due to the fact that its colours are in
Block . Note that there may be no pair (v, c) of the forward frontier with c ∈ Flock as that
means that the exploration of the c-coloured forward-reachable set is complete. A symmetric
role is played by the sets Bopen and Bpaused .

In the first while loop (lines 10–21), we compute the reachability sets in the lock-step
manner. Once a reachability set is completed for some colours (i.e., there are no vertices
to expand with those colours), we add the colours to the corresponding Flock or Block

variable. Note that we ensure that Flock and Block remain disjoint even if the two reachability
procedures converged at the same time for certain colours—see line 14. We use Flock and
Block to split the newly computed frontier sets into the parts that are to be expanded in the
next iteration (Fopen , Bopen) and the parts currently left unexpanded (Fpaused , Bpaused).

Note that during the computation of Post and Pre on lines 11 and 12, we intersect the
resulting set with V . This step is not necessary for correctness, but as the algorithm divides
V ×C into smaller sets in each recursive call to Decomposition, it can happen that the set
of states reachable from V is substantially larger than V itself. In such cases, this intersection
effectively restricts the computation of Post and Pre to the sub-graph of G induced by V.

Component identification (phase two). After the first while loop terminates, we compute
the set Con that is an analogue for the converged set of the original lock-step algorithm
(line 22). As already suggested above and unlike the original algorithm, this set cannot be just
F or B, but is instead a mixture of both, depending on the converged colours. To compute
this set, we use the Flock and Block variables.

Once Con is computed, Fopen and Bopen are restarted using the converged portion of
Fpaused and Bpaused (lines 23 and 24). The second while loop (lines 25–30) can then complete
the unfinished forward and backward reachability set, now restricted to the inside of the
converged set. The intersection of F and B then forms a coloured set W with the property
that for all c ∈ Colours(V), W(_, c) is a strongly connected component of G(c). We create
the corresponding relation using the Join operation, add this relation to the resulting Rscc ,
and recursively call the whole procedure with V \ Con and Con \W as the base sets.

Comments on the coloured approach. Let us note that there is possibly another ap-
proach to processing coloured graphs. Instead of trying to work with all colours still appearing
in the coloured vertex set at once, we could fork a new recursive procedure whenever the
colour set splits due to the differences in the graph structure. For example, instead of picking
multiple coloured vertices as pivots, one could pick a single vertex with a valid subset of
colours and then address the remaining colours in a separate recursive call. Similarly, instead
of a single recursive Decomposition call with Con \ W, we could consider two calls, one
with the F portion of Con and the other with the B portion of Con (note that these are
colour-disjoint since each colour can converge only in one of the two sets).

While such an approach could be to some extent beneficial in a massively parallel
environment where each recursive call can be executed independently on a new CPU, the
amount of forking in large systems will soon become unreasonable. More importantly, it
defeats the purpose of the symbolic representation, which aims to minimise the number of
symbolic operations.

38:12 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

a

a a

a a

a a

a

a ab b

b b

b b

b b

b

b c

c

c c

c c

c

c c

c

d

d

d

d d

d d

d

d

d

e

e e

e

e e

e

e e

e

f

f

f

f f

f

f f

f

f

F B

Pivots(V) =
{(b, blue), (b, red)}

blue ∈ Flock

red ∈ Block

after
second
phase

Figure 3: An illustration of the algorithm execution. There are two colours: red and blue. The
left column represents the forward reachability part; the right column represents
the backward reachability part. Filled nodes are contained in F , B respectively.
Nodes with solid coloured border are in Fopen , Bopen ; nodes with dashed coloured
border are in Fpaused , Bpaused . The bottom-most picture represents the resulting
coloured set W.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:13

Example. The execution of one iteration of the algorithm is illustrated in Figure 3. Here,
we have an edge-coloured graph with six vertices and two colours (red and blue). The
top-most picture represents the initial situation after we have chosen the pivots; in this
case, {(b, blue), (b, red)}. The next four rows illustrate the first phase (the first while loop)
of the algorithm. After the second iteration of the loop, the blue colour becomes locked
in Flock , and thus (f, blue) is not expanded in the backward reachability procedure. This
is illustrated by its dashed outline. After the third iteration of the loop, the red colour
becomes locked in Block and thus the first phase ends. In the second phase, both reachability
procedures continue from the paused coloured vertices (dashed outlines); the result is seen in
the fifth row. The intersection of the two reachable sets (i.e. the coloured set W) is then
illustrated in the bottom-most picture. The algorithm would now continue with the coloured
sets V \ Con = {(a, blue), (d, blue)} and Con \W = {(c, red)}.

2.5. Correctness and Complexity of the Coloured Lock-step Algorithm.

Theorem 2.1. Let G = (V,C,E) be a coloured graph. The coloured lock-step algorithm
terminates and computes the coloured SCC decomposition relation Rscc.

Proof. We first show that the set W computed in line 31 indeed contains one SCC for
every colour c ∈ Colours(V) and that the recursive calls of Decomposition preserve the
property that V is SCC-closed with respect to all colours.

Let us assume that V is SCC-closed and let us take an arbitrary c ∈ Colours(V). The
function Pivots chooses a set that contains exactly one pair whose colour is c, let us call
this pair (v, c). Let us further assume that c is assigned into Flock first (the case with Block

is completely symmetric).
Let us now choose an arbitrary vertex w such that v and w are in the same SCC of G(c),

i.e. v →∗ w and w →∗ v. As the first while loop finishes, F contains all the pairs of the form
(u, c) ∈ V where u is reachable from v in G(c). Thus, it also contains (w, c) due to the fact
that V is SCC-closed. Now, either (w, c) ∈ B, or there exists a vertex x such that w →∗ x,
x→∗ v in G(c) and x ∈ Bpaused . This means that (w, c) is added to B in the second while
loop. In both cases, both (v, c) and (w, c) are then added to W. As the vertex choices were
arbitrary, this proves that the SCC of v in G(c) is contained inW . Furthermore, if (y, c) ∈ W
for an arbitrary y, then v →∗ y and y →∗ v in G(c), which means that y is in SCC(G(c), v).
This proves that W contains exactly one SCC for every colour c ∈ Colours(V).

We now argue that Con is SCC-closed with respect to all colours. This immediately
implies that both V \ Con and Con \W are SCC-closed. Let us assume that there is a colour
c ∈ Colours(V) and two vertices v, w in the same SCC of G(c) such that (v, c) ∈ Con,
but (w, c) 6∈ Con. Let us assume that c ∈ Flock (as above, the case of Block is completely
symmetrical). Then (v, c) ∈ F after the first while loop finishes. This also means that
(w, c) ∈ F as the forward reachability procedure is completed for c and thus (w, c) ∈ Con,
a contradiction.

What remains is to show that the algorithm terminates and that every SCC is eventually
found. Termination is trivially proved by the fact that size of the set V always decreases
in recursive calls: both W and Con are non-empty because they contain the initial pivot
set as a subset. Clearly, a representant of every SCC of every monochromatisation G(c)
is eventually chosen as a pivot. Together with the above reasoning, this implies that the
algorithm is correct.

38:14 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Theorem 2.2. Let |V | be the number of vertices in the coloured graph and let |C| be the
number of colours. The coloured lock-step algorithm performs at most O(|C| · |V | · log |V |)
symbolic steps.

Proof. Let us first note that all the derived operations defined in Figure 1 use only a constant
number of the basic symbolic operations. As we are considering asymptotic complexity here,
we can view all the operations in Figure 1 as elementary symbolic steps.

We first make the observation that each vertex may be chosen as a part of the pivot set
at most |C| times. Clearly, once a vertex is included in the pivot set with a set of colours
C ′, then, {v} × C ′ is a subset of first Con, and later W (due to the monotonicity of the
construction of F and B). Therefore, the elements of {v} × C ′ do not appear in subsequent
recursive calls. Since a single vertex-colour pair cannot be returned by Pivots twice, it
means that the total cumulative complexity of all the calls to the Pivots routine is bounded
by O(|C| · |V |). We can therefore exclude them from the rest of the complexity analysis.

We now consider the complexity of a single call to Decomposition without the subse-
quent recursive calls. Let us now select one of the colours for which the lock-step reachability
procedure (lines 10–21) finished last, i.e., one of the colours that have been added to Flock or
Block in the final iteration of the loop. Let us call this colour c. Recall that σ2(c,X) is the
set of vertices with colour c in a coloured set X .

Let us denote by W the monochromatic SCC discovered for c, i.e. W := σ2(c,W), and
let S be the smaller of σ2(c,V \ Con) and σ2(c, Con \W). Clearly S contains at most |V |/2
vertices. Let k = |S ∪W |. We now argue that the number of symbolic steps in a given call
(without the recursive calls) is bounded by O(k). This is because in a lock-step algorithm,
the call to Decomposition must explore the discovered SCC itself (i.e. W), and the smaller
of the forward or backward reachable sets from this SCC (i.e. S) – intuitively, its complexity
should be thus bounded by the size of these two sets.

Assume w.l.o.g. that c ∈ Flock (a completely symmetric argument solves the case
c ∈ Block). Then after the first while loop finishes, we have σ2(c, Con) = σ2(c,F). If S is
σ2(c, Con\W) then k is the size of σ2(c,F) (and thus also σ2(c, Con)), since σ2(c,F) consists
of σ2(c, Con \W) (the set S) and σ2(c,W) (the discovered SCC). Each iteration of the first
while loop puts at least one vertex with colour c into F ; otherwise c would not have finished
in the last iteration. This means that the loop runs for at most k iterations. This also means
that the size of σ2(x,X) for all colours x and X ∈ {F ,B} is also bounded by k after the first
while loop finishes, which in turn means that the second while loop cannot make more than
O(k) steps.

If S is σ2(c,V \ Con) instead, let us define B := σ2(c,B) right after the first while loop
has finished. We know that B ⊆ S ∪W : if a vertex v was in B \ S, then it would have to be
in Con (i.e. (v, c) ∈ Con). Due to our initial assumption of c ∈ Flock (w.l.o.g), we then also
have (v, c) ∈ F which dictates v ∈W . Consequently, we see that any vertex v ∈ B must be
either in S or in W , arriving at B ⊆ S ∪W . Again, each iteration of the first while loop
puts at least one vertex with colour c into B; otherwise c would have been in Block before it
appeared in Flock . Similarly to the previous case, this means that both while loops run for
at most O(k) steps.

The rest of the argument uses amortised reasoning, in a way similar to the proof
in [BGS00]. Note that each vertex is going to be an element of the set W as described above
at most |C| times (once for each colour). Furthermore, each vertex is going to be an element
of the set S as described above at most |C| · log |V | times: for each colour, the vertex can be
an element of the smaller of the two sets at most log |V | times. As the cost of each single

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:15

call can be charged to the vertices in S ∪W as explained above, it is sufficient to charge
each vertex the total cost of |C|+ |C| · log |V |. Together, this means that the total number
of symbolic steps is bounded by O(|C| · |V | · log |V |).

Note that the upper bound established by Theorem 2.2 is no better than the one we
would get if we split the coloured graph into its monochromatic constituents and processed
each separately using the original lock-step algorithm [BGS00]. We remark, however, that the
practical complexity of the coloured approach can be much smaller. Indeed, the complexity
analysis in the previous proof focused on a single colour, omitting the fact that SCCs for many
other colours are found at the same time. In cases where the edges are largely shared among
the colours, which is true in many applications, the coloured algorithm has the potential to
significantly outperform the parameter-scan approach. The situation is similar to that of the
coloured model checking; see the observations made in [BBK+12].

3. Symbolic Computation with Boolean Networks

The algorithm as presented in the previous section is completely agnostic to the properties
of the underlying system, as long one provides an implementation of all the necessary
symbolic operations. However, to empirically test its performance, we need to pick such an
implementation, which typically entails analysis of a specific class of systems.

In this paper, we consider Boolean networks [Kau69, RCB05, SKI+20, Tho73], specifically
asynchronous Boolean networks, which represent a popular discrete modelling framework in
systems biology [BČŠ13, GBS+15]. Due to incomplete biological knowledge, the dynamics of
a Boolean network can by often only partially known. This uncertainty can be then captured
using coloured directed graphs. In this section, we introduce Boolean networks and show
how they can be translated into coloured graphs suitable for SCC-decomposition.

Asynchronous Boolean networks are especially challenging for symbolic analysis. It is
a well-known fact, that using symbolic structures (e.g BDDs) to explore very large state
spaces gives good results for synchronous systems, but shows its limits when trying to tackle
asynchronicity (see e.g. [CT05]).

3.1. Boolean networks with inputs. A Boolean network (BN), as the name suggests,
consists of n Boolean variables s1, . . . , sn which together describe the state of the network.
The dynamics of the network can also depend on additional m Boolean inputs c1, . . . , cm
(sometimes also called constants, or logical parameters), whose value is assumed to be fixed,
but generally unknown. The valuations of these inputs correspond to the colours of our
Kripke structure.

Each network variable si is equipped with a Boolean update function bi : {0, 1}n ×
{0, 1}m → {0, 1} that updates the variable based on the state of the network, and the values
of its inputs. We assume that the variables are updated asynchronously, meaning that during
every state transition, exactly one variable is updated.

Such a network with inputs defines a coloured graph where V = {0, 1}n, C = {0, 1}m,
and for every c ∈ C, we have that u c−→ v if and only if u 6= v and v = u[ui 7→ bi(u, c)]
for some i ∈ [1, n]. That is, v is equal to u where the i-th variable is updated with the
output of function bi. Because all variables and inputs are Boolean, this structure has a fairly
straightforward symbolic representation in terms of binary decision diagrams, as we later
demonstrate.

38:16 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Note that in practice, we often work within a subset of biologically relevant colours,
denoted as V alid (i.e. not every possible valuation of c1, . . . , cm may be biologically admissi-
ble). In the algorithms, this is implicitly reflected such that the set of all possible colours
C corresponds to the set V alid instead of the set of all possible valuation (i.e. {0, 1}m) if
demanded by the application at hand.

3.2. Partially specified Boolean networks. A Boolean network with inputs allows us to
easily encode a wide range of biochemical systems in a machine friendly format. However,
for systems with a high degree of uncertainty, it often fails to capture this uncertainty in
a way understandable to a human reader.

To mitigate this issue, we consider partially specified Boolean networks that allow us to
explicitly mark parts of the update functions as unknown. Specifically, let us assume that
f
(a1)
1 , f (a2)2 , . . . are symbols standing in for some uninterpreted (fixed but arbitrary) Boolean

functions (here, ai denotes their arity). A partially specified Boolean network then consists of
n Boolean variables and p uninterpreted Boolean functions. In such a network, every update
function b′i is specified as a Boolean expression that can use the function symbols f1, . . . , fp.

This type of formalism is often easier to comprehend, as the uncertainty in dynamics is
tied to the update functions instead of inputs (if desired, input can be still expressed using
uninterpreted functions of arity zero). It is not immediately clear how such a network should
be represented symbolically though.

One option is to translate a partially specified network into a BN with inputs. Any
uninterpreted function f (a)i can be encoded in terms of 2a Boolean inputs ci1, . . . , ci2a if we
consider that input rij denotes the output of f (a)i in the j-th row of its truth table. Formally,
this translation can be achieved using a repeated application of the following expansion rule:

f(α1, . . . , αa) ≡ (α1 ⇒ f ′1(α2, . . . , αa)) ∧ (¬α1 ⇒ f ′2(α2, . . . , αa))

Here, f ′1 and f ′2 are fresh uninterpreted functions of arity a− 1, and αi are arbitrary Boolean
expressions. Using this rule, we can always convert a partially specified network to a Boolean
network with inputs. The number of inputs will be exponential with respect to the arity of
the employed uninterpreted functions though (since each application of the rule replaces one
uninterpreted function with two, and the depth of the recursive expansion is the arity a).

For example, consider the following partially specified Boolean network:

b′1 := x1 ∧ f (1)1 (x2)

b′2 := ¬x1 ∨ f
(2)
2 (x1, x3)

b′3 := (f
(0)
3 ⇔ x3) ∧ f (2)2 (¬x1, x2)

It uses three uninterpreted Boolean functions f (1)1 , f (2)2 , and f (0)3 . After performing the
aforementioned expansion, and simplifying the resulting expressions slightly for readability,
we obtain the following network with logical inputs:

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:17

b1(x, c) = x1 ∧ (x2 ⇒ c1[1]) ∧ (¬x2 ⇒ c1[0])

b2(x, c) = ¬x2 ∨ (((x1 ∧ x3)⇒ c2[1,1]) ∧ ((x1 ∧ ¬x3)⇒ c2[1,0])

∧ ((¬x1 ∧ x3)⇒ c2[0,1]) ∧ ((¬x1 ∧ ¬x3)⇒ c2[0,0]))

b3(x, c) = (c3 ⇔ x3) ∧ ((¬x1 ∧ x2)⇒ c2[1,1]) ∧ ((¬x1 ∧ ¬x2)⇒ c2[1,0])

∧ ((x1 ∧ x2)⇒ c2[0,1]) ∧ ((x1 ∧ ¬x2)⇒ c2[0,0])

Here, each cij corresponds to one truth table row of fi, such that j describes the input
vector corresponding to said row (i.e. c1[0,1] represents the value of f1(0, 1)).

3.3. Symbolic Representation of BNs. As a symbolic representation, a natural choice
are Reduced Ordered Binary Decision Diagrams (ROBDD, or simply BDD) [Bry86], which
can concisely encode Boolean functions or relations of Boolean vectors. Specifically, out im-
plementation leverages the internal tools and libraries provided by the tool AEON [BBPŠ20].

Since a Boolean network consists of n Boolean variables and m Boolean inputs, any
subset of V , C, or a relation X ⊆ V ×C (a coloured set of vertices) can be seen as a Boolean
formula over the network variables and inputs. That is, each network variable and logical
input corresponds to one decision variable of the BDD. Here, a pair (s, c) belongs to such
a relation iff it represents a satisfying assignment of this formula X. For relations of higher
arity, fresh decision variables are created for each component of the relation. Standard set
operations as described in Fig. 1 then correspond to logical operations on such formulae
(∧ ≡ ∩, ∨ ≡ ∪, etc.).

Relation operations are similarly implementable using BDD primitives. In particular,
existential quantification of a single decision variable (e.g. ∃si.X or ∃cj .X) is a native
operation on BDDs. Consequently, existential quantification on relations (as well as Colours)
is simply a quantification over all decision variables encoding the specific relation component
(i.e. all network variables for V , or all logical inputs for C). Finally, Swap only influences
the way in which a BDD is interpreted – the actual structure of the BDD is unaffected.

To encode the network dynamics, notice that every update function bi can be directly
represented as a separate BDD. From such BDDs, we can build one large BDD describing the
whole coloured transition relation, which is traditionally used for the computation of Pre
and Post. But the symbolic representation of such relation is often prohibitively complex
for asynchronous systems. Instead, we compute Pre and Post using partial results for
individual variables, which uses more symbolic operations but is less likely to cause a blow-up
in the size of the BDD:

VarPost(G, i,X) = (X ∧ (bi 6⇔ si))[si 7→ ¬si]
VarPre(G, i,X) = X [si 7→ ¬si] ∧ (bi 6⇔ si)

Post(G,X) =
∨

i∈[1,n]

VarPost(i,X)

Pre(G,X) =
∨

i∈[1,n]

VarPre(i,X)

Here, [si 7→ ¬si] is the standard substitution operation, which we use to flip the value of
variable si in the resulting formula if it does not agree with the output of bi. Note that

38:18 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

this operation can be also implemented structurally directly on the BDD by exchanging
the children of decision nodes conditioning on si. Also note that sub-formulae that do not
depend on X can be pre-computed once for the whole run of the algorithm, and the version
of Pre and Post for monochromatic graphs can be implemented in exactly the same way.

4. Implementation

Finally, let us discuss a number of technical improvements which our algorithm employs in
practice, and whose impact we consider in the evaluation section.

4.1. Pivot Selection. In Algorithm 1, we gave a naive implementation of the Pivots(X)
function. Here, we show how to implement it for BDDs in a much more concise way. Note
that our approach uses the notation we established earlier for Boolean networks, but is
generally applicable to any set or relation of bit-vectors represented using BDDs.

First, notice that for a single network variable, we can define a similar operation, which
we call Pick(i,X):

Pick(i,X) = X \ (X ∧ ¬si)[si ← ¬si]
Here, we first restrict X only to the valuations which have si = false, and then invert the

value of si (resulting in si being always true in the set). Once we subtract these valuations
from X , the resulting set then contains a valuation with si = true only if it does not contain
the same valuation with si = false. Intuitively, for any valuation of the remaining BDD
decision variables (i.e. sj and cj in our case) that is in X , we just picked a single unique
value of si (while preferring the value si = false).

However, observe that we cannot simply apply Pick to every network variable alone
to obtain the result of Pivots. Intuitively, the problem lies in the fact that Pick selects
a witness for each variable in isolation, while Pivots considers all network variables as
interconnected. We resolve this problem using a different equation, one which eliminates the
picked variable in the recursive invocation:

Pivots(X) = F(X , s1, . . . , sn)
F(X , s1) = Pick(1,X)

F(X , s1, . . . , sk) = Pick(k,X) ∩ F(∃sk.X , s1, . . . , sk−1)

In this equation, the final case F(X , s1) is clearly correct, since it simply defers to
Pick(i,X). However, to understand why the recursive case F(X , s1, . . . , sk) is correct,
observe the following: Assume that the set Y = F(∃sk.X , s1, . . . , sk−1) is computed correctly.
That is, for any valuation of the remaining variables, Y contains a single unique incomplete
witness valuation of variables s1, . . . , sk−1. Now, since the BDD representing ∃sk.X does not
depend on sk, each such unique witness must be included in Y twice: once with sk = true and
once with sk = false. In other words, a single witness valuation of s1, . . . , sk−1 must be tied
to two different valuations of the remaining variables, and these valuations are differentiated
only by the variable sk.

Now, one of these two valuations is necessarily included in the set Pick(k,X). The other
is either missing from X altogether, or is eliminated by Pick(k,X). As such, computing
Pick(k,X) ∩ Y extends the witness from s1, . . . , sk−1 to s1, . . . , sk by eliminating one of the
two aforementioned occurrences of the incomplete witness.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:19

Observe that, as opposed to the original naive implementation of Pivots, this imple-
mentation only requires O(n) (i.e. O(log |V |)) symbolic operations in any case.

4.2. Saturation. In [CMS06], and later in greater detail within [ZC11], Ciardo et al. show
that when the system is asynchronous, it may be much easier to compute reachable sets
(and consequently SCCs) by applying only one transition (e.g. denoted t1) at a time. Once
applying t1 cannot add new states to the reachable set, another transition (e.g denoted t2)
can be considered, respecting the order in which the affected variables appear in the symbolic
data structure (Ciardo et al. employ multivalued decision diagrams, but the principle also
applies to BDDs). If the application of other transitions causes that we can again add new
states using t1, the process starts anew and t1 is “saturated” again.

In the comparison presented in [ZC11], only the Xie-Beerel O(|V |2) algorithm is used
with saturation enabled, while the lock-step algorithm is used as given in [BGS00]. However,
we argue that saturation can be also beneficial in the lock-step algorithm.

Asymptotic complexity. Unfortunately, combining lock-step with saturation disrupts the
O(|V | · log |V |) asymptotic complexity of the algorithm. To see why this is the case, observe
that classical symbolic reachability (i.e. a fixed-point algorithm iterating the Post procedure)
requires O(|V |) steps to explore a graph. Meanwhile, a reachability procedure employing
saturation needs O(|V ||T |) operations, where |T | is the number of distinct transitions.

This is caused by the fact that saturation needs to check up to |T | transitions to discover
a vertex. For example, consider an asynchronous graph employing transitions t1, . . . , tn such
that t1 and tn are alternated on a path of length O(|V |). Between considering t1 and tn,
saturation will attempt each of the |T | transitions, which are useless on this path, but still
consume a symbolic operation.

Consequently, this |T | factor trickles down into the complexity of both the Xie-Beerel
and lock-step algorithms if saturation is used, as both ultimately rely on some form of
reachability to discover the graph vertices. The complexity of the coloured algorithms is
then similarly affected.

Saturation and lock-step. The main idea of how saturation is applied in a coloured lock-
step algorithm (for Boolean networks) is shown in Algorithm 2. The algorithm presents
a helper function which performs one reachability step, similar to what is performed by
the Post function. However, in this algorithm, only one transition is fired for each colour
(we assume the iteration follows the order of variables as they appear in the symbolic
representation, which benefits saturation). Additionally, a set R of colours that could not
perform a step is computed. A similar procedure can be considered for backwards reachability,
simply replacing VarPost with VarPre.

Note that there is a slight discrepancy between Algorithm 2 and the intuitive description
of saturation that we gave earlier. In particular, we see that during a NextStep operation,
a transition for each variable is triggered at most once, as opposed to the original description,
where a transitions are fired repeatedly. This is caused by the simple nature of Boolean
networks: In a BN, a single transition always modifies a single Boolean variable. Consequently,
no new states can be discovered by firing a single transition multiple times in sequence. For
other asynchronous systems, VarPost may need to be modify to apply the corresponding
transition repeatedly.

38:20 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Additionally, note that we use the set R to ensure that VarPost (i.e. firing of a single
transition) is executed only for colours for which we have not found a successor yet using some
of the previously considered transitions. This is necessary to ensure that in each invocation
of NextStep, each colour present in F is either advanced by one step (using exactly one
transition), or is reported as converged within the returned set R.

Using this process, we can replace the Pre/Post procedures in the main lock-step
algorithm (lines 11 and 12 of Algorithm 1). The R sets computed here are then used to
update Flock and Block (lines 13 and 14), as they exactly represent the converged colours
that do not need further computation. A similar modification is necessary for the second
while loop (lines 25-29), but here the sets of remaining colours R are not needed.

Algorithm 2: Main idea of the lock-step-saturation approach. The algorithm
extends F with one additional reachability step, and returns a set of colours locked
in this iteration (R).
1 Function NextStep(G,F)
2 R← Colours(F);
3 for A ∈ Var do
4 S ← VarPost(G, A, (F ∩ V)×R);
5 R← R \Colours(S);
6 F ← F ∪ S;
7 if R = ∅ then
8 break;
9 end

10 end
11 return (F , R);

4.3. Trimming and Parallelism. Most graphs typically contain a large number of trivial
SCCs that introduce unnecessary overhead to the main algorithm. To avoid this overhead, we
additionally perform a trimming step before each invocation of Decomposition. Trimming
consists of repeatedly removing all vertices which have no outgoing or no incoming edges
and is employed by most symbolic SCC algorithms on standard directed graphs as well.

The coloured analogue of trimming is straightforward, as it can be achieved using Pre
and Post operations just as in the non-coloured case. For a coloured set of vertices V,
operation Post(G,Pre(G,V) ∩ V) ∩ V returns only the vertices which have at least one
predecessor in V. The successor variant simply exchanges the Post and Pre operations.

As such, applying this operation to each V until a fixed-point is reached before De-
composition is invoked eliminates the undesired trivial SCCs. Since the total number of
steps performed collectively by all such fixed-point computations is bounded by |C||V | (the
total number of removable vertex-colour pairs), this does not impact the overall asymptotic
complexity of the algorithm.

In some cases, we have observed that the symbolic representation is able to handle the
SCC computation but explodes during trimming. The algorithm then times-out during
trimming, even though useful information about SCCs could be obtained if the trimming was
skipped or postponed. To avoid this issue, we enforce an extra condition that a trimming

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:21

procedure is terminated prematurely if the computed BDDs are more than twice the size (in
terms of BDD decision nodes) of the initial set.

Additionally, the lock-step algorithm can be rather trivially parallelised. The recursive
Decomposition calls operate on independent coloured vertex sets and can be therefore
deferred to separate threads. Since the body of the Decomposition method is rather
complex, this can be done easily with a queue guarded by a mutex which is shared between
all threads (i.e. the synchronisation overhead is negligible due to the long running time of
Decomposition). Finally, a simple termination detection procedure is needed to ensure
that idle threads do not terminate prematurely while decomposition is still running.

Note that most BDD packages are not internally thread-safe, as they share decision node
memory across different BDD objects. In our experiments, this aspect is handled by cloning
the set V corresponding to each recursive invocation, plus the symbolic representation of the
BN necessary to compute Post and Pre. As such, the memory used to represent BDDs
manipulated by each thread is completely independent from other threads.

5. Experimental Evaluation

To test the algorithm, we compiled a benchmark set of Boolean networks from the CellCollec-
tive [HKM+12] and GINsim [CNT12] model databases. Since the models in these databases
contain fully specified networks, uninterpreted functions were introduced into existing models
by pseudo-randomly erasing parts of the existing update functions.

While this process is to some extent artificial, we believe it to be a good approximation
of the model development process, where at some point, the structure of the network is
already established, but its dynamics are still not fully determined. Using this process, we
obtained a collection of networks ranging between 220 and 250 in the size of the coloured
graph (i.e. |V × C|). Note that for each graph, we consider only a subset of possible input
valuations that is biologically relevant with respect to the established network structure. For
example, the first model (i.e. [SOHMMA17]) admits 248 input valuations, but only 219 are
biologically relevant due to constraints on function monotonicity.

A complete overview of the employed models is given in Table 1. For each model, we
give the number of discovered non-trivial components as an interval, because each colour
can correspond to a different number of components. We employ a 24h timeout for all
experiments.

The experiments were performed on a 32-core AMD Threadripper workstation with
64GB of RAM memory. All tested models are available in our source code repository.3 Note
that the smaller models (< 230) should be easy to process even on a less powerful machine;
however, the larger models can require substantial amount of memory.

For each model, we have tested the lock-step algorithm as presented in the main part of
this paper (Lock-step in Table 2), an enhanced version with saturation enabled (Satur. in
Table 2), and a parallel implementation which also includes saturation (Parallel in Table 2).
In all algorithms, we employ the trimming optimisation.

From the results, we can see that parallelisation improves the performance of the
algorithm significantly: in case of models with a large number of SCCs, we see an up-to 30x
speed-up, comparing Parallel and Satur. in Table 2. On the other hand, when the number

3https://github.com/sybila/biodivine-lib-param-bn/tree/lmcs

https://github.com/sybila/biodivine-lib-param-bn/tree/lmcs

38:22 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

Table 1: The considered benchmark models. Here, n is the number of BN variables, m is
the number of logical inputs (after expansion of uninterpreted functions), |C| is the
number of all biologically relevant colours (input valuations), and |V × C| is the
size of the whole biologically relevant coloured state space. Finally, #SCC gives
the number of detected non-trivial SCCs. Note that this number varies depending
on input valuation, and is thus given as a range.

Model name n m |C| |V × C| #SCC

Asymmetric Cell Division [SOHMMA17] 5 48 ∼ 219 ∼ 224 1-13

Reduced TCR Signalisation [KSRL+06] 10 46 ∼ 214 ∼ 224 36-115

Budding Yeast (Orlando) [OLB+08] 9 54 ∼ 216 ∼ 227 1-16

Budding Yeast (Irons) [Iro09] 18 44 ∼ 217 ∼ 235 2-5568

Tumor Cell Migration [CMR+15] 20 44 ∼ 215 ∼ 235 436-379308

T-cell Differentiation [MX06] 23 40 ∼ 215 ∼ 238 41728-43264

WG Signalling Pathway [MJB+13] 26 38 ∼ 222 ∼ 248 0

Full TCR Signalisation [KSRL+06] 30 48 ∼ 217 ∼ 247 48-1087

Table 2: Overview of runtime for different version of the SCC detection algorithm. The times
(hours:minutes:seconds) refer to the total runtime of the SCC decomposition
procedure for the basic lock-step, lock-step with saturation, and lock-step with
saturation and parallelism, with DNF representing a time-out after 24-hours.

Model Name Parallel Satur. Lock-step

Asymmetric Cell Division [SOHMMA17] 00:05 00:10 00:15

Reduced TCR Signalisation [KSRL+06] 00:04 00:45 01:12

Budding Yeast (Orlando) [OLB+08] 06:29 06:50 11:21

Budding Yeast (Irons) [Iro09] 15:14 2:53:16 3:28:44

Tumor Cell Migration [CMR+15] 40:10 18:34:16 DNF

T-cell Differentiation [MX06] 16:10:41 DNF DNF

WG Signalling Pathway [MJB+13] 1:18:38 1:23:37 1:42:12

Full TCR Signalisation [KSRL+06] 4:49:04 DNF DNF

of SCCs is small (such as [OLB+08]), the speed-up is understandably minimal, since the
number of independent recursive calls is also small.

As expected, the total number of SCCs has a significant impact on the performance of the
algorithm (e.g. [Iro09] and [CMR+15]) overall, since the number of calls to Decomposition
increases. Furthermore, we see that our “coloured saturation” indeed provides a performance
benefit. However, this improvement is mostly incremental.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:23

After further analysis, we discovered that the whole algorithm is often limited by
the performance of the trimming procedure, rather than reachability procedures though.
In particular, the use of saturation has significantly reduced the size of symbolic representation
during computation of reachability, however the symbolic representation still performs rather
poorly (at least for Boolean networks) during trimming. This limits the performance of
the whole method, since all the considered graphs contain a large portion of trivial SCCs.
Furthermore, in many cases the number of iterations needed to completely trim a set of
states is substantial. This leads us to believe there is still space for improvement in terms of
SCC detection in large Boolean networks, even without parameters.

Finally, we examined the benefit of processing all colours simultaneously versus a naive
parameter scan approach, where each monochromatic case is handled separately. To do
so, we considered various pseudo-random monochromatisations of the studied models and
processed these using our algorithm. Here, we observe that for the four models with at
least 20 variables, no computation for any of the monochromatic models finished in under
one second (with T-cell differentiation typically requiring more than one minute due to the
relatively large number of components).

Consequently, we can extrapolate that computing the full coloured SCC decomposition
using such naive parameter scan would require more than 10 ours for each model (and 10+
days in the case of T-cell differentiation). This approach could be to some extent beneficial
in a massively parallel environment (hundreds or thousands of CPUs), but the coloured
approach clearly scales better in setups where resources are more limited.

6. Conclusions

This paper presents a fully symbolic algorithm for detecting all monochromatic strongly
connected components in edge-coloured graphs. The work has been motivated by systems
sciences, namely systems biology, where the need for efficient automated analysis of com-
ponents in large graphs with a large sets of coloured edges is emerging. The algorithm
combines several ideas inspired by existing state-of-the-art algorithms for SCC decomposition
in a non-trivial way. We believe this is the first fully symbolic algorithm aiming to solve the
problem efficiently.

The experimental evaluation has shown that the algorithm can handle large, real-world
systems that would be otherwise too large to fit into the memory of a conventional workstation
(> 232), and that the performance of the algorithm can be further improved using saturation
and parallelisation. Finally, the algorithm has a strong potential to be significantly faster
than iterating a standard algorithm for SCC decomposition executed on all monochromatic
sub-graphs one-by-one.

References

[AA07] S. Akbari and A. Alipour. Multicolored trees in complete graphs. Journal of Graph Theory,
54(3):221–232, 2007.

[ADF+08] A. Abouelaoualim, K. Ch. Das, L. Faria, Y. Manoussakis, C. Martinhon, and R. Saad. Paths
and trails in edge-colored graphs. In LATIN 2008: Theoretical Informatics, pages 723–735.
Springer, 2008.

[AG97] N. Alon and G. Gutin. Properly colored hamilton cycles in edge-colored complete graphs.
Random Structures & Algorithms, 11(2):179–186, 1997.

38:24 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

[BBB+17] Jiří Barnat, Nikola Beneš, Luboš Brim, Martin Demko, Matej Hajnal, Samuel Pastva, and
David Šafránek. Detecting attractors in biological models with uncertain parameters. In
Computational Methods in Systems Biology (CMSB 2017), volume 10545 of Lecture Notes in
Computer Science, pages 40–56. Springer, 2017.

[BBBv11] Jiří Barnat, Petr Bauch, Luboš Brim, and Milan Češka. Computing strongly connected
components in parallel on CUDA. In 25th IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2011 - Conference Proceedings, pages 544–555. IEEE, 2011.

[BBK+12] J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safranek, M. Vejnar, and T. Vejpustek. On
parameter synthesis by parallel model checking. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 9(3):693–705, 2012.

[BBP+19] Nikola Beneš, Luboš Brim, Samuel Pastva, Jakub Poláček, and David Šafránek. Formal
analysis of qualitative long-term behaviour in parametrised boolean networks. In Formal
Methods and Software Engineering (ICFEM 2019), volume 11852 of Lecture Notes in Computer
Science, pages 353–369. Springer, 2019.

[BBPŠ20] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. AEON: attractor bifurcation
analysis of parametrised boolean networks. In Computer Aided Verification - 32nd Interna-
tional Conference, CAV 2020, volume 12224 of Lecture Notes in Computer Science, Cham,
2020. Springer International Publishing.

[BBPŠ21] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Symbolic coloured SCC
decomposition. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 64–83. Springer, 2021.

[BCLF79] Mehdi Behzad, Gary Chartrand, and Linda Lesniak-Foster. Graphs and Digraphs. Wadsworth
Publishing, 1979.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 10ˆ20 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[BČŠ13] Luboš Brim, Milan Češka, and David Šafránek. Model checking of biological systems. In
Formal Methods for Dynamical Systems, pages 63–112. Springer Berlin Heidelberg, 2013.

[BCVDP11] Jiří Barnat, Jakub Chaloupka, and Jaco Van De Pol. Distributed algorithms for SCC decom-
position. J. Log. and Comput., 21(1):23–44, 2011.

[BGS00] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm for strongly connected
component analysis in n log n symbolic steps. In Formal Methods in Computer-Aided Design
(FMCAD 2000), Lecture Notes in Computer Science, pages 37–54. Springer-Verlag, 2000.

[BJG97] Joergen Bang-Jensen and Gregory Gutin. Alternating cycles and paths in edge-coloured
multigraphs: A survey. Discrete Mathematics, 165-166:39 – 60, 1997.

[BLvdP16] Vincent Bloemen, Alfons Laarman, and Jaco van de Pol. Multi-core on-the-fly SCC decompo-
sition. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’16, New York, NY, USA, 2016. ACM.

[BPC+10] Grégory Batt, Michel Page, Irene Cantone, Gregor Goessler, Pedro T. Monteiro, and Hidde
de Jong. Efficient parameter search for qualitative models of regulatory networks using
symbolic model checking. Bioinformatics, 26(18), 2010.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., 35(8):677–691, 1986.

[CC16] Sang-Mok Choo and Kwang-Hyun Cho. An efficient algorithm for identifying primary pheno-
type attractors of a large-scale boolean network. BMC Systems Biology, 10(1):95, 2016.

[CDHL18] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Veronika Loitzenbauer.
Lower bounds for symbolic computation on graphs: Strongly connected components, liveness,
safety, and diameter. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2018), pages 2341–2356. SIAM, 2018.

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-François
Raskin. Model checking lots of systems: efficient verification of temporal properties in software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 335–344, 2010.

[CMR+15] David PA Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel Barillot, Andrei Zinovyev,
and Laurence Calzone. Mathematical modelling of molecular pathways enabling tumour cell
invasion and migration. PLoS computational biology, 11(11):e1004571, 2015.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:25

[CMS06] Gianfranco Ciardo, Robert M. Marmorstein, and Radu Siminiceanu. The saturation algorithm
for symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf., 8(1):4–25, 2006.

[CNT12] Claudine Chaouiya, Aurelien Naldi, and Denis Thieffry. Logical modelling of gene regulatory
networks with ginsim. In Bacterial Molecular Networks, pages 463–479. Springer, 2012.

[CT05] Jean-Michel Couvreur and Yann Thierry-Mieg. Hierarchical decision diagrams to exploit
model structure. In FORTE 2005, volume 3731 of Lecture Notes in Computer Science, pages
443–457. Springer, 2005. doi:10.1007/11562436_32.

[DAERR16] Dávid Deritei, William C Aird, Mária Ercsey-Ravasz, and Erzsébet Ravasz Regan. Principles
of dynamical modularity in biological regulatory networks. Nature Scientific Reports, 6:21957,
2016.

[Dor94] Dietmar Dorninger. Hamiltonian circuits determining the order of chromosomes. Discrete
Applied Mathematics, 50(2):159 – 168, 1994.

[FHP00] Lisa K. Fleischer, Bruce Hendrickson, and Ali Pınar. On identifying strongly connected
components in parallel. In Parallel and Distributed Processing, volume 1800 of Lecture Notes
in Computer Science, pages 505–511. Springer, 2000.

[GBS+15] Melanie Grieb, Andre Burkovski, J. Eric Sträng, Johann M. Kraus, Alexander Groß, Günther
Palm, Michael Kühl, and Hans A. Kestler. Predicting variabilities in cardiac gene expression
with a boolean network incorporating uncertainty. PLOS ONE, 10(7):1–15, 07 2015.

[GGG+17] Mirco Giacobbe, Calin C. Guet, Ashutosh Gupta, Thomas A. Henzinger, Tiago Paixão, and
Tatjana Petrov. Model checking the evolution of gene regulatory networks. Acta Informatica,
54(8):765–787, 2017.

[GPP03] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. Computing strongly connected
components in a linear number of symbolic steps. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), volume 3, pages 573–582.
SIAM, 2003.

[GPP08] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. Symbolic graphs: Linear solutions to
connectivity related problems. Algorithmica, 50(1):120–158, 2008.

[HKM+12] Tomáš Helikar, Bryan Kowal, Sean McClenathan, Mitchell Bruckner, Thaine Rowley, Alex
Madrahimov, Ben Wicks, Manish Shrestha, Kahani Limbu, and Jim A Rogers. The cell
collective: toward an open and collaborative approach to systems biology. BMC systems
biology, 6(1):1–14, 2012.

[HRO13] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. On fast parallel detection of strongly
connected components (SCC) in small-world graphs. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013,
New York, NY, USA, 2013. ACM.

[Iro09] DJ Irons. Logical analysis of the budding yeast cell cycle. Journal of theoretical biology,
257(4):543–559, 2009.

[Jia93] Bin Jiang. I/O- and CPU-optimal recognition of strongly connected components. Information
Processing Letters, 45(3):111 – 115, 1993.

[Kau69] S.A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22(3):437–467, 1969.

[Kir14] Zoltán Király. Monochromatic components in edge-colored complete uniform hypergraphs.
European Journal of Combinatorics, 35:374 – 376, 2014.

[KL08] Mikio Kano and Xueliang Li. Monochromatic and heterochromatic subgraphs in edge-colored
graphs - a survey. Graphs and Combinatorics, 24(4):237–263, 2008.

[KSRL+06] Steffen Klamt, Julio Saez-Rodriguez, Jonathan A Lindquist, Luca Simeoni, and Ernst D
Gilles. A methodology for the structural and functional analysis of signaling and regulatory
networks. BMC bioinformatics, 7(1):56, 2006.

[LWA+16] Qin Li, Anders Wennborg, Erik Aurell, Erez Dekel, Jie-Zhi Zou, Yuting Xu, Sui Huang, and
Ingemar Ernberg. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of
stability, and escape. Proceedings of the National Academy of Sciences, 113(10):2672–2677,
2016.

[LZCY14] Guohui Li, Zhe Zhu, Zhang Cong, and Fumin Yang. Efficient decomposition of strongly
connected components on GPUs. Journal of Systems Architecture, 60(1):1 – 10, 2014.

http://dx.doi.org/10.1007/11562436_32

38:26 N. Beneš, L. Brim, S. Pastva, and D. Šafránek Vol. 18:1

[Mat20] A.E. Matouk. Complex dynamics in susceptible-infected models for covid-19 with multi-drug
resistance. Chaos, Solitons & Fractals, 140:110257, 2020.

[MJB+13] Abibatou Mbodj, Guillaume Junion, Christine Brun, Eileen EM Furlong, and Denis Thieffry.
Logical modelling of drosophila signalling pathways. Molecular BioSystems, 9(9):2248–2258,
2013.

[MPQY19] A. Mizera, J. Pang, H. Qu, and Q. Yuan. Taming asynchrony for attractor detection in large
boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
16(1):31–42, 2019.

[MX06] Luis Mendoza and Ioannis Xenarios. A method for the generation of standardized qualitative
dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling, 3(1):13,
2006.

[OLB+08] David A Orlando, Charles Y Lin, Allister Bernard, Jean Y Wang, Joshua ES Socolar, Edwin S
Iversen, Alexander J Hartemink, and Steven B Haase. Global control of cell-cycle transcription
by coupled CDK and network oscillators. Nature, 453(7197):944–947, 2008.

[Orz05] Simona Orzan. On Distributed Verification and Verified Distribution. PhD thesis, Free Uni-
versity Amsterdam, 2005.

[PIS+21] Tatjana Petrov, Claudia Igler, Ali Sezgin, Thomas A Henzinger, and Calin C Guet. Long
lived transients in gene regulation. Theoretical Computer Science, 893:1–16, 2021.

[RCB05] Adrien Richard, Jean-Paul Comet, and Gilles Bernot. Graph-based modeling of biological
regulatory networks: Introduction of singular states. In Computational Methods in Systems
Biology (CMSB 2005), volume 3082 of Lecture Notes in Computer Science, pages 58–72.
Springer, 2005.

[Rei85] John H. Reif. Depth-first search is inherently sequential. Information Processing Letters,
20(5):229 – 234, 1985.

[Saa92] R. Saad. Sur quelques problèmes de complexité dans les graphes. PhD thesis, U. de Paris-Sud,
Orsay, 1992.

[Sha81] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Com-
puters & Mathematics with Applications, 7(1):67–72, 1981.

[SKI+20] Julian D. Schwab, Silke D. Kühlwein, Nensi Ikonomi, Michael Kühl, and Hans A. Kestler.
Concepts in boolean network modeling: What do they all mean? Computational and Structural
Biotechnology Journal, 18:571–582, 2020.

[SOHMMA17] Ismael Sánchez-Osorio, Carlos A Hernández-Martínez, and Agustino Martínez-Antonio. Mod-
eling asymmetric cell division in caulobacter crescentus using a boolean logic approach. In
Asymmetric Cell Division in Development, Differentiation and Cancer, pages 1–21. Springer,
2017.

[SRM14] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS and coloring-based parallel algorithms
for strongly connected components and related problems. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 550–559, 2014.

[SRR+18] Will Steffen, Johan Rockström, Katherine Richardson, Timothy M. Lenton, Carl Folke, Diana
Liverman, Colin P. Summerhayes, Anthony D. Barnosky, Sarah E. Cornell, Michel Crucifix,
Jonathan F. Donges, Ingo Fetzer, Steven J. Lade, Marten Scheffer, Ricarda Winkelmann, and
Hans Joachim Schellnhuber. Trajectories of the earth system in the anthropocene. Proceedings
of the National Academy of Sciences, 115(33):8252–8259, 2018.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[Tho73] René Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology,
42(3):563–585, 1973.

[TW07] Andrew Thomason and Peter Wagner. Complete graphs with no rainbow path. Journal of
Graph Theory, 54(3):261–266, 2007.

[WKB14] Anton Wijs, Joost-Pieter Katoen, and Dragan Bošnački. GPU-based graph decomposition
into strongly connected and maximal end components. In Computer Aided Verification (CAV
2014), volume 8559 of Lecture Notes in Computer Science, pages 310–326. Springer, 2014.

[XB00] Aiguo Xie and Peter A Beerel. Implicit enumeration of strongly connected components and an
application to formal verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(10):1225–1230, 2000.

Vol. 18:1 BDD-BASED ALGORITHM FOR SCC DECOMPOSITIONOF EDGE-COLOURED GRAPHS 38:27

[YMPQ19] Qixia Yuan, Andrzej Mizera, Jun Pang, and Hongyang Qu. A new decomposition-based
method for detecting attractors in synchronous boolean networks. Science of Computer
Programming, 180:18–35, 2019.

[ZC11] Yang Zhao and Gianfranco Ciardo. Symbolic computation of strongly connected components
and fair cycles using saturation. Innov. Syst. Softw. Eng., 7(2):141–150, 2011.

[ZHA+07] Shu-Qin Zhang, Morihiro Hayashida, Tatsuya Akutsu, Wai-Ki Ching, and Michael K. Ng.
Algorithms for finding small attractors in Boolean networks. EURASIP J. Bioinformatics
Syst. Biol., 2007:4–4, January 2007.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	Introduction
	Structure of the paper
	Related Work

	1. Problem Definition
	1.1. Graphs and Strongly Connected Components
	1.2. Coloured SCC Decomposition Problem

	2. Algorithm
	2.1. Symbolic Computation Model
	2.2. Forward-Backward Algorithm
	2.3. Lock-step Algorithm
	2.4. Coloured Lock-step Algorithm
	2.5. Correctness and Complexity of the Coloured Lock-step Algorithm

	3. Symbolic Computation with Boolean Networks
	3.1. Boolean networks with inputs
	3.2. Partially specified Boolean networks
	3.3. Symbolic Representation of BNs

	4. Implementation
	4.1. Pivot Selection
	4.2. Saturation
	4.3. Trimming and Parallelism

	5. Experimental Evaluation
	6. Conclusions
	References

