
VOLUME 6, ISSUE 1, PAPER 6
On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

©Bernard Boigelot, Université de Liège ©Julien Brusten, Université de Liège ©Véronique Bruyère, Université de MonsHainaut 
Abstract
This article studies the expressive power of finite automata recognizing sets
of real numbers encoded in positional notation. We consider Muller automata as
well as the restricted class of weak deterministic automata, used as symbolic
set representations in actual applications. In previous work, it has been
established that the sets of numbers that are recognizable by weak
deterministic automata in two bases that do not share the same set of prime
factors are exactly those that are definable in the first order additive theory
of real and integer numbers. This result extends Cobham's theorem, which
characterizes the sets of integer numbers that are recognizable by finite
automata in multiple bases.
In this article, we first generalize this result to multiplicatively
independent bases, which brings it closer to the original statement of Cobham's
theorem. Then, we study the sets of reals recognizable by Muller automata in
two bases. We show with a counterexample that, in this setting, Cobham's
theorem does not generalize to multiplicatively independent bases. Finally, we
prove that the sets of reals that are recognizable by Muller automata in two
bases that do not share the same set of prime factors are exactly those
definable in the first order additive theory of real and integer numbers. These
sets are thus also recognizable by weak deterministic automata. This result
leads to a precise characterization of the sets of real numbers that are
recognizable in multiple bases, and provides a theoretical justification to the
use of weak automata as symbolic representations of sets.

Publication date: February 24, 2010
Full Text: PDF  PostScript DOI: 10.2168/LMCS6(1:6)2010
Hit Counts: 4391 
Creative Commons  