some image logo

HOME

SEARCH

CURRENT ISSUE

REGULAR ISSUES

   Volume 1 (2005)

   Volume 2 (2006)

   Volume 3 (2007)

   Volume 4 (2008)

   Volume 5 (2009)

   Volume 6 (2010)

      Issue 1

      Issue 2

      Issue 3

      Issue 4

   Volume 7 (2011)

   Volume 8 (2012)

   Volume 9 (2013)

   Volume 10 (2014)

SPECIAL ISSUES

SURVEY ARTICLES

AUTHORS

ABOUT

SERVICE

LOGIN

FAQ

SUPPORT

CONTACT

VOLUME 6, ISSUE 4, PAPER 11


On the meaning of logical completeness

©Michele Basaldella, RIMS, Kyoto University, Japan
©Kazushige Terui, RIMS, Kyoto University, Japan

Abstract
Goedel's completeness theorem is concerned with provability, while Girard's theorem in ludics (as well as full completeness theorems in game semantics) are concerned with proofs. Our purpose is to look for a connection between these two disciplines. Following a previous work [3], we consider an extension of the original ludics with contraction and universal nondeterminism, which play dual roles, in order to capture a polarized fragment of linear logic and thus a constructive variant of classical propositional logic. We then prove a completeness theorem for proofs in this extended setting: for any behaviour (formula) A and any design (proof attempt) P, either P is a proof of A or there is a model M of the orthogonal of A which defeats P. Compared with proofs of full completeness in game semantics, ours exhibits a striking similarity with proofs of Goedel's completeness, in that it explicitly constructs a countermodel essentially using Koenig's lemma, proceeds by induction on formulas, and implies an analogue of Loewenheim-Skolem theorem.

Publication date: December 22, 2010

Full Text: PDF | PostScript
DOI: 10.2168/LMCS-6(4:11)2010

Hit Counts: 3196

Creative Commons