some image logo

HOME

SEARCH

CURRENT ISSUE

REGULAR ISSUES

   Volume 1 (2005)

   Volume 2 (2006)

   Volume 3 (2007)

   Volume 4 (2008)

   Volume 5 (2009)

   Volume 6 (2010)

   Volume 7 (2011)

      Issue 1

      Issue 2

      Issue 3

      Issue 4

   Volume 8 (2012)

   Volume 9 (2013)

   Volume 10 (2014)

   Volume 11 (2015)

   Volume 12 (2016)

   Volume 13 (2017)

SPECIAL ISSUES

SURVEY ARTICLES

AUTHORS

ABOUT

SERVICE

LOGIN

FAQ

SUPPORT

CONTACT

VOLUME 7, ISSUE 2, PAPER 6


Automated Synthesis of Tableau Calculi

©Renate A. Schmidt, University of Manchester
©Dmitry Tishkovsky, University of Manchester

Abstract
This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.

Publication date: May 7, 2011

Full Text: PDF | PostScript
DOI: 10.2168/LMCS-7(2:6)2011

Hit Counts: 6355

Creative Commons